Κυριακή 1 Νοεμβρίου 2020

Fiber-Specific Changes in White Matter Microstructure in Individuals With X-Linked Auditory Neuropathy

Greek DailyNews shared this article with you from Inoreader
imageObjectives: Auditory neuropathy (AN) is the term used to describe a group of hearing disorders, in which the hearing impairment occurs as a result of abnormal auditory nerve function. While our understanding of this condition has advanced significantly over recent years, the ability to determine the site of lesion and the extent of dysfunction in affected individuals remains a challenge. To this end, we investigated potential axonal degeneration in the white matter tracts of the brainstem in individuals with X-linked AN. We hypothesized that individuals with X-linked AN would show focal degeneration within the VIII nerve and/or auditory brainstem tracts, and the degree of degeneration would correlate with the extent of auditory perceptual impairment. Design: This was achieved using a higher-order diffusion magnetic resonance imaging (dMRI)–based quantitative measure called apparent fiber density as obtained from a technique called single-shell 3-tissue constrained spherical deconvolution and analyzed with the fixel-based analysis framework. Eleven subjects with genetically confirmed X-linked AN and 11 controls with normal hearing were assessed using behavioral and objective auditory measures. dMRI data were also collected for each participant. Results: Fixel-based analysis of the brainstem region showed that subjects with X-linked AN had significantly lower apparent fiber density in the VIII nerve compared with controls, consistent with axonal degeneration in this region. Subsequent analysis of the auditory brainstem tracts specifically showed that degeneration was also significant in these structures overall. The apparent fiber density findings were supported by objective measures of auditory function, such as auditory brainstem responses, electrocochleography, and otoacoustic emissions, which showed VIII nerve activity was severely disrupted in X-linked AN subjects while cochlear sensory hair cell function was relatively unaffected. Moreover, apparent fiber density results were significantly correlated with temporal processing ability (gap detection task) in affected subjects, suggesting that the degree of VIII nerve degeneration may impact the ability to resolve temporal aspects of an acoustic signal. Auditory assessments of sou nd detection, speech perception, and the processing of binaural cues were also significantly poorer in the X-linked AN group compared with the controls with normal hearing. Conclusions: The results of this study suggest that the dMRI–based measure of apparent fiber density may provide a useful adjunct to existing auditory assessments in the characterization of the site of lesion and extent of dysfunction in individuals with AN. Additionally, the ability to determine the degree of degeneration has the potential to guide rehabilitation strategies in the future.
View on the web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου