Τετάρτη 15 Ιανουαρίου 2020

Phosphorus removal from wastewater by waste concrete: influence of P concentration and temperature on the product

Phosphorus removal from wastewater by waste concrete: influence of P concentration and temperature on the product:

Abstract

This study investigated the feature of phosphorus uptake by low-cost waste concrete. Adsorption isotherms, metal dissolution, influence of P concentration and temperature, as well as adsorbent regeneration were investigated. Chemical extraction, SEM, XRD, FTIR, and XPS were employed to determine the products of P sequestration. Results demonstrated that phosphate adsorption fitted the Langmuir isotherm model well, with estimated maximum phosphate adsorption capacity of 80.5 mg/g (10 °C). Of adsorbed phosphate, 72.1% could be desorbed when 0.1 M citrate buffer was used as eluant, and waste concrete could be recovered and reused for 4 times by the combination of eluting and roasting. Mechanisms including Ca/alkali dissolution, surface adsorption, and chemical precipitation are involved in the sequestration of phosphorus from wastewater by waste concrete. Weakly adsorptive phosphorus and Ca-P precipitate were the main products. P concentration was the major factor that affected P removal capacity and the product types, while temperature had certain effect at low P concentration. The dominant product was weakly adsorptive phosphorus for low P concentration at low temperature, which was substituted by Ca-P precipitate as temperature or P concentration increased. The increase of P concentration assisted both the increase of P removal potential and the formation of Ca-P precipitate to crystal DCPD.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου