Δευτέρα 10 Φεβρουαρίου 2020

Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants.

Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants.:

Related Articles
Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants.

Ear Hear. 2019 Dec 31;:

Authors: Jahn KN, Arenberg JG

Abstract

OBJECTIVES: The primary objective of this study was to quantify differences in evoked potential correlates of spiral ganglion neuron (SGN) density between younger and older individuals with cochlear implants (CIs) using the electrically evoked compound action potential (ECAP). In human temporal bone studies and in animal models, SGN density is the lowest in older subjects and in those who experienced long durations of deafness during life. SGN density also varies as a function of age at implantation and hearing loss etiology. Taken together, it is likely that younger listeners who were deafened and implanted during childhood have denser populations of SGNs than older individuals who were deafened and implanted later in life. In animals, ECAP amplitudes, amplitude growth function (AGF) slopes, and their sensitivity to stimulus interphase gap (IPG) are predictive of SGN density. The authors hypothesized that younger listeners who were deafened and implanted as children would demonstrate larger ECAP amplitudes, steeper AGF slopes, and greater IPG sensitivity than older, adult-deafened and implanted listeners.

DESIGN: Data were obtained from 22 implanted ears (18 individuals). Thirteen ears (9 individuals) were deafened and implanted as children (child-implanted group), and nine ears (9 individuals) were deafened and implanted as adults (adult-implanted group). The groups differed significantly on a number of demographic variables that are implicitly related to SGN density: (1) chronological age; (2) age at implantation; and (3) duration of preimplantation hearing loss. ECAP amplitudes, AGF linear slopes, and thresholds were assessed on a subset of electrodes in each ear in response to two IPGs (7 and 30 µsec). Speech recognition was assessed using a medial vowel identification task.

RESULTS: Compared with the adult-implanted listeners, individuals in the child-implanted group demonstrated larger changes in ECAP amplitude when the IPG of the stimulus was increased from 7 to 30 µsec (i.e., greater IPG sensitivity). On average, child-implanted participants also had larger ECAP amplitudes and steeper AGF linear slopes than the adult-implanted participants, irrespective of IPG. IPG sensitivity for AGF linear slope and ECAP threshold did not differ between age groups. Vowel recognition performance was not correlated with any of the ECAP measures assessed in this study.

CONCLUSIONS: The results of this study support the theory that young CI listeners who were deafened and implanted during childhood may have denser neural populations than older listeners who were deafened and implanted as adults. Potential between-group differences in SGN integrity emphasize a need to investigate optimized CI programming parameters for younger and older listeners.

PMID: 32032228 [PubMed - as supplied by publisher]

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου