Πέμπτη 26 Μαρτίου 2020

Wolfram syndrome (WS) is a rare disorder caused by mutations in WFS1 that is characterized by diabetes mellitus, optic atrophy, sensorineural deafness, diabetes insipidus, and neurodegeneration. .....Effect of 4-phenylbutyrate and valproate on dominant mutations of WFS1 gene in Wolfram syndrome

Effect of 4-phenylbutyrate and valproate on dominant mutations of WFS1 gene in Wolfram syndrome:

40618.jpg

Abstract



Purpose

Wolfram syndrome (WS) is a rare disorder caused by mutations in WFS1 that is characterized by diabetes mellitus, optic atrophy, sensorineural deafness, diabetes insipidus, and neurodegeneration. This disease is usually inherited as an autosomal recessive trait, but an autosomal dominant form has been reported. WFS1 encodes a transmembrane protein, which is a maintenance component of endoplasmic homeostasis. These dominant mutations were thought to increase endoplasmic reticulum (ER) stress. Recent studies suggest that 4-phenylbutyrate (PBA) and valproate (VPA) reduce ER stress. The objective of this study was to analyze the effect of PBA and VPA on dominant WFS1 mutants in vitro.




Methods

We determined whether dominant WFS1 mutants (p.His313Tyr, p.Trp314Arg, p.Asp325_Ile328del, p.Glu809Lys, and p.Glu864Lys) have the dominant negative effect using a luciferase assay of ER stress response element marker as ER stress. Moreover, the rescue of cell apoptosis induced by dominant WFS1 mutants following treatment with PBA or VPA was determined by quantitative real-time PCR of C/EBP homologous protein (CHOP) mRNA expression.




Results

These mutants showed the dominant negative effect on the wild-type WFS1. In addition, the levels of ER stress and CHOP mRNA were significantly elevated by all dominant WFS1 mutants. After treatment with PBA or VPA, ER stress and cell apoptosis were reduced in each mutant.




Conclusions

PBA and VPA could reduce the ER stress and cell apoptosis caused by dominant WFS1 mutants.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου